Как растут мышцы
Содержание:
- Саркоплазматическая гипертрофия. Практика саркоплазматической гипертрофии
- Влияние тренировки на композицию и гипертрофию мышечных волокон различных типов
- Важную экскреторную функцию выполняет. Выделительные процессы: значение, органы выделения. Основные функции почек.
- Как происходит?
- Бизнес и финансы
- Механизмы гипертрофии скелетных мышц
- Факторы, влияющие на гипертрофию
- Типы мышц человека
- Повторность
- 3
- Гиперплазия мышц[править | править код]
Саркоплазматическая гипертрофия. Практика саркоплазматической гипертрофии
Настоящая гипертрофия саркоплазмы – это гипертрофия саркоплазматических белков, что происходит при относительно медленном темпе выполнения упражнений в большом объеме, при условиях гипоксии. Почему? Потому, что взрывная техника, большие веса и низкий объем ведут к гипертрофии миофибрилл, а отсутствие гипоксии к гипертрофии митохондрий. Такие выводы, например, можно сделать из исследования МакДугалла от 1982 года, в котором за 6 месяцев «бодибилдеровских тренировок», нетренированные ранее люди, достигли за счет увеличения саркоплазмы почти такого же объема мышц, как и тренированные пауэрлифтеры. В то же время, есть исследования, в которых показано, что гипоксия способствует только повышенному синтезу миофибриллярных белков, а на синтез саркоплазмы влияния не оказывает. Скорее всего, что это связано именно с разнообразным составом саркоплазматического ретикулума.
И все же, сделать однозначные выводы по поводу того, что конкретно ведет к саркоплазматической гипертрофии невозможно, поскольку для этого надо вырезать по кубическому сантиметру мышцы до её тренировки и после, что, понятное дело, in vivo невозможно. Но, исходя из имеющихся научных и умозрительных данных, можно сделать вывод, что за увеличение саркоплазмы отвечает классический объемный тренинг, который, тем не менее, не может считаться единственно верной методикой тренировок, по крайней мере, для тех, кто не использует стероиды. Почему? Потому, что функциональное значение саркоплазмы заключается в обеспечении энергией миофибрилл, в связи с чем, саркоплазматическая гипертрофия и обусловлена гипертрофией миофибриллярного аппарата. Так что все сказанное выше вполне себе является лишним подтверждением того, чтоследует составлять в пропорциях: 3-4 месяца высокоинтенсивных тренировок для гипертрофии миофибрилл и 1-2 месяца высокообъемных тренировок для гипертрофии саркоплазмы.
Влияние тренировки на композицию и гипертрофию мышечных волокон различных типов
Доказано, что силовая тренировка и тренировка на выносливость не изменяют соотношения в мышцах медленных (I тип) и быстрых (II тип) мышечных волокон. Вместе с тем, эти виды тренировки способны изменять соотношение двух видов быстрых волокон, увеличивая процент мышечных волокон IIA типа и, соответственно, уменьшая процент мышечных волокон IIB типа.
В результате силовой тренировки степень гипертрофии быстрых мышечных волокон (II типа) значительно больше, чем медленных волокон (I типа), тогда как тренировка, направленная на выносливость, ведёт к гипертрофии в первую очередь медленных волокон (I типа). Эти различия показывают, что степень гипертрофии мышечного волокна зависит как от меры его использования в процессе тренировок, так и от его способности к гипертрофии.
Силовая тренировка связана с относительно небольшим числом повторных максимальных или близких к ним мышечных сокращений, в которых участвуют как быстрые, так и медленные мышечные волокна. Однако и небольшого числа повторений достаточно для развития гипертрофии быстрых волокон, что указывает на их большую предрасположенность к гипертрофии по сравнению с медленными волокнами
Высокий процент быстрых волокон (II типа) в мышцах служит важной предпосылкой для значительного роста мышечной силы при направленной силовой тренировке. Поэтому люди с высоким процентом быстрых волокон в мышцах имеют более высокие потенциальные возможности для развития силы и мощности.
Тренировка выносливости связана с большим числом повторных мышечных сокращений относительно небольшой силы, которые в основном обеспечиваются активностью медленных мышечных волокон. Поэтому при тренировке на выносливость более выражена гипертрофия медленных мышечных волокон (I типа) по сравнению с гипертрофией быстрых волокон (II типа).
Важную экскреторную функцию выполняет. Выделительные процессы: значение, органы выделения. Основные функции почек.
Выделение продуктов распада является последним этапом обмена белков, жиров и углеводов, очень важным для нормального функционирования и существования организма. Конечные и другие выделяемые продукты и некоторые вещества, введенные с лекарствами, накапливаясь в тканях, могут отравить организм. Через органы выделения они выводятся из организма.
Главная функция органов выделения состоит в поддержании относительного постоянства внутренней среды организма, без которого невозможна жизнь. Поэтому любое нарушение выделительных процессов, особенно выделительной функции почек, приводит к тяжелым заболеваниям.
К органам выделения относятся почки, легкие, кожа, потовые железы, пищеварительные железы, слизистая оболочка желудочно-кишечного тракта и др. Процессы выделения, или экскреции, освобождают организм от чужеродных токсических веществ, а также от избытка солей.
Легкие выводят из организма летучие вещества, например, пары эфира и хлороформа при наркозе, пары алкоголя, а также углекислый газ и пары воды.
Пищеварительные железы и слизистая оболочка желудочно-кишечного тракта выделяют некоторые тяжелые металлы, ряд лекарственных веществ (морфий, хинин, салицилаты), чужеродные органические соединения (например, краски).
Важную экскреторную функцию выполняет печень, удаляя из крови гормоны (тироксин, фолликулин), продукты обмена гемоглобина, продукты азотистого метаболизма и многие другие вещества.
С потом через коду из организма выделяются вода и соли, некоторые органические вещества, в частности, мочевина, мочевая кислота, а при напряженной мышечной работе — молочная кислота.
Функции почек:
Осморегуляция – регуляция постоянства осмотического давления жидкостей, путем изменения кол-ва выводимых осмотически активных вещ-в: мочевины, глюкозы, солей.
Волюморегуляция – регуляция водного баланса и соответственного объема циркулирующей крови, вне- и внутриклеточной жидкости
Ионная регуляция – регуляция ионного состава жидкостей и ионного баланса путем избирательного изменения экскреции ионов с мочой
Регуляция рН, КОС – путем экскреции водородных ионов, нелетучих кислот и оснований. Нарушение – ацидоз/алкалоз
Инкреторная – образование и выделение в кровоток физиологически активных вещ-в: ренин, эритропоэтин, активная форма витамина Д, простагландины, брадикинины, урокиназа.
Регуляция уровня АД – путем внутренней секреции ренина, веществ депрессорного действия, экскреции ионов натрия и воды, изменение оцк.
Регуляция эритропоэза – внутренней секрецией гуморального регулятора эритрона – эритропоэтина.
Регуляция гемостаза – путем образования гуморальных регуляторов свертывания крови и фибриногена – урокиназы, тромбопластина, а также участии в обмене физиологического антикоагулянта гепарина.
Выделительная (экскреторная) – здесь очень важно то, что почка фильтрует 180 л. жидкостей и возвращает 179 л
Всё, что не нужно, почка не всасывает и выводит
Метаболическая – в условиях голодания за счет глюконеогенеза образуется половина глюкозы организма. Стабилизация белкового обмена – эндогенные белки (поступающие от различных органов, в частности от мыщц) подвергабтся гидролизу до амк-т и поступают в кровь для сохранения массы сердечной мышцы и мозга. Глюконеогенез обеспечивается за счёт ПВК, стабилизируя тем самым рН крови.
Защитная – удаление чужеродных, токсических веществ.
Как происходит?
Итак, рано или поздно мы упираемся в генетический предел (или предел стероидного фона), после которого мышцы максимально уплотнены и не способны расти дальше. Как правило, этот предел находится далеко от старта гиперплазии. Организм просто отказывается наращивать новые мышечные элементы. Это связано с тем, что человек просто не в состоянии поддерживать все системы на должном уровне для обеспечения потенциала роста, так как чрезмерное увеличение мышц чревато выходом из строя абсолютно всех систем.
А теперь назад в биохимию. Все дело в том, что когда мы вызываем гипертрофию мышечных тканей, новые волокна располагаются вдалеке от ядра. А значит, их обслуживание сопряжено с определенными трудностями. Чем больше увеличивается мышечная масса, тем дальше ключевые рычажные элементы находятся от центра тяжести ключевой клетки.
Когда размер всей ткани превышает размер ядра (которое тоже растет в процессе тренировок) более, чем в 20 раз, возможен коллапс – разрыв клетки, с выделением основных рычажных элементов в отдельную структуру. В отсутствии специальных факторов такая клетка просто разрушается и выводится в общий энергопоток, перерабатываясь в аминокислоты и восстанавливая изначальную структуру.
Если же создать специальные условия, несвойственные нашему организму при помощи гормона роста, то анаболический фон может быть настолько высок, что в определенный момент часть отделившихся клеток оторвут кусок ядра. По факту это будет полноценное деление клеток. Со временем обе клетки станут полноценными участниками нашего организма, так как ядро восстановится, а его энергетические системы придут в порядок.
Бизнес и финансы
БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством
Механизмы гипертрофии скелетных мышц
В основе миофибриллярной гипертрофии мышечных волокон лежит интенсивный синтез и уменьшенный распад мышечных белков.
Существует несколько гипотез миофибриллярной гипертрофии:
- гипотеза ацидоза;
- гипотеза гипоксии;
- гипотеза механического повреждения мышечных волокон.
Гипотеза ацидоза предполагает, что пусковым стимулом для повышенного синтеза белка в скелетных мышцах является накопление в них молочной кислоты (лактата). Увеличение лактата в мышечных волокнах вызывает повреждение сарколеммы мышечных волокон и мембран органелл, появление в саркоплазме мышечных волокон ионов кальция, что вызывает активизацию протеолитических ферментов, расщепляющих мышечные белки. Увеличение синтеза белка в этой гипотезе связано с активацией и последующим делением клеток-сателлитов.Гипотеза гипоксии предполагает, что пусковым стимулом для повышенного синтеза белка в скелетных мышцах является временное ограничение поступления кислорода (гипоксия) к скелетным мышцам, что происходит при выполнении силовых упражнений с большими отягощениями. Гипоксия и последующая реперфузия (восстановление притока кислорода к скелетным мышцам) вызывает повреждение мембран мышечных волокон и органоидов, появление в саркоплазме мышечных волокон ионов кальция, что вызывает активизацию протеолитических ферментов, расщепляющих мышечные белки. Увеличение синтеза белка в этой гипотезе связано с активизацией и последующим делением клеток-сателлитов.Гипотеза механического повреждения мышечных волокон предполагает, что пусковым стимулом для повышенного синтеза белка является большое мышечное напряжение, что приводит к сильным повреждениям сократительных белков и белков цитоскелета мышечного волокна. Доказано, что даже однократная силовая тренировка может привести к повреждению более 80 % мышечных волокон. Повреждение саркоплазматического ретикулума вызывает увеличение в саркоплазме мышечного волокна ионов кальция и последующим процессам, описанным выше.
Согласно вышеописанным гипотезам повреждение мышечного волокна вызывает запаздывающие болезненные ощущения в мышцах (DOMS), что связывается с их воспалением.
Очень важную роль в регуляции объема мышечной массы, в частности в развитии гипертрофии мышц, играют андрогены (мужские половые гормоны). У мужчин они вырабатываются половыми железами (семенниками) и в коре надпочечников, а у женщин — только в коре надпочечников. Соответственно у мужчин количество андрогенов в организме больше, чем у женщин.
Возрастное развитие мышечной массы идёт параллельно с увеличением продукции андрогенных гормонов. Первое заметное увеличение объёма мышечных волокон наблюдается в 6-7-летнем возрасте, когда усиливается образование андрогенов. С наступлением полового созревания (11-15 лет) начинается интенсивный прирост мышечной массы у мальчиков, который продолжается и после периода полового созревания. У девочек развитие мышечной массы в основном заканчивается с периодом полового созревания.
В опытах на животных установлено, что введение препаратов андрогенных гормонов (анаболиков) вызывает значительную интенсификацию синтеза мышечных белков, в результате чего увеличивается масса тренируемых мышц и как результат — их сила. Вместе с тем, гипертрофия скелетных мышц может происходить и без участия андрогенных и других гормонов (гормона роста, инсулина и тиреоидных гормонов).
Факторы, влияющие на гипертрофию
Биологические факторы (такие как ДНК и пол), питание и тренировочные переменные могут влиять на гипертрофию мышц.
Индивидуальные различия в генетике составляют значительную часть различий в существующей мышечной массе. Классический дизайн исследования близнецов (аналогичный поведенческой генетике) показал, что около 53% вариации безжировой массы тела передается по наследству, а также около 45% вариации доли мышечных волокон.
В период полового созревания у мужчин гипертрофия происходит с повышенной скоростью. Естественная гипертрофия обычно прекращается при полном росте в позднем подростковом возрасте. Поскольку тестостерон является одним из основных гормонов роста организма, в среднем мужчинам легче достичь гипертрофии (по абсолютной шкале), чем женщинам, и в среднем у них примерно на 60% больше мышечной массы, чем у женщин. Дополнительный прием тестостерона, как и в случае анаболических стероидов , улучшит результаты. Он также считается препаратом , улучшающим спортивные результаты, использование которого может привести к отстранению участников или запрету на участие в соревнованиях. Тестостерон также является регулируемым медицинскими веществами веществом в большинстве стран, что делает его незаконным владение без рецепта врача . Использование анаболических стероидов может вызвать атрофию яичек , остановку сердца и гинекомастию .
Положительный энергетический баланс, когда больше калорий потребляется, чем сжигается, необходим для анаболизма и, следовательно, для гипертрофии мышц. Повышенная потребность в белке, особенно в аминокислотах с разветвленной цепью (BCAA), необходима для повышенного синтеза белка, что наблюдается у спортсменов, тренирующихся для гипертрофии мышц.
Переменные тренировки в контексте силовой тренировки, такие как частота, интенсивность и общий объем, также напрямую влияют на увеличение мышечной гипертрофии. Постепенное увеличение всех этих параметров тренировки приведет к мышечной гипертрофии.
Типы мышц человека
В зависимости от строения, функций и расположения вся мышечная ткань в организме человека делится на три группы.
- Гладкие мышцы составляют стенки внутренних органов и кровеносных сосудов. Они работают автоматически, непрерывно, не зависимо от сознания. С их помощью передвигается пищевой комок по пищеварительной системе, работает мочевой пузырь, поднимается или опускается артериальное давление.
- Сердечные мышцы располагаются только в сердце, служат для перекачивания крови. Работают тоже непрерывно и ритмично.
- Скелетные мышцы или поперечнополосатые составляют каркас тела. Именно эти мышцы интересны нам, т.к. именно их мы пытаемся накачать. Они отвечают не только за различные движения, но и за поддержание равновесия, определенного положения. Даже в покое, когда человек сидит или лежит, многие из них работают. Усилием воли человек может заставить их сокращаться или расслабляться. Эти волокна активно реагируют на нервные импульсы, с помощью нагрузок можно увеличить их силу и объем. Но непрерывная работа приводит к их утомлению.
Физические тренировки направлены на укрепление скелетных мышц. Но в организме все взаимосвязано.
Крепкий мышечный корсет поддерживает правильную работу внутренних органов, что приводит к улучшению пищеварения. Благодаря этому мышечные волокна получают больше питательных веществ и могут выдерживать еще большие нагрузки.
Так же связаны скелетные мышцы и с работой сердца. Во время тренировки укрепляется сердечная мышца. Это приводит к улучшению кровообращения и обеспечения миоцитов кислородом.
Свойства скелетных мышц
Поперечнополосатые или скелетные мышцы человека имеют самое сложное строение. Именно они составляют часть опорно-двигательного аппарата, на них направлены физические тренировки. Эти мышцы выполняют множество важных функций:
- поддерживают позу;
- участвуют в передвижении;
- в перемещении частей тела;
- защищают внутренние органы;
- регулируют дыхание, кровообращение, температуру тела.
Они способны проводить нервные импульсы и под их влиянием сокращаться
Важной также является способность этих волокон к расслаблению и сохранению состояния покоя. Характеризуются они такими свойствами:
- растяжимость – увеличение длины под действием силы, большинство волокон способно растягиваться на 150%;
- эластичность – восстановление первоначального вида после прекращения действия силы;
- сократимость – способность сжиматься, обычно на 30-50% длины;
- сила – удержание определенного груза
Скелетные мышцы могут функционировать в динамическом режиме, когда происходит их активное сокращение и растяжение, а также в изометрическом режиме. Это статическое напряжение, не приводящее к изменению длины волокон.
Так работают мышцы, поддерживающие вертикальное положение тела и работающие на преодоление силы тяжести.
Особенность скелетных мышц также зависит от типа и строения волокон.
- Красные или медленные волокна содержат много митохондрий. Расположены глубоко, в основном это отводящие мышцы и разгибатели. Возбуждаются медленно, требуют внешней стимуляции. Скорость проведения нервного импульса – до 8 м/с. Активно используют кислород, окисляют углеводы и жиры, участвуют в теплообмене.
- Быстрые или белые мышечные волокна расположены поверхностно. Это сгибатели и приводящие. Способны работать при дефиците кислорода. Сокращаются быстро, скорость проведения импульса до 40 м/с. Но то, какие волокна участвуют в движении, зависит не от скорости, а от приложенного усилия.
Считается, что соотношение разных мышечных волокон определяется генетически. Этим можно объяснить природную склонность людей к определенным видам спорта. Но при правильном распределении нагрузки можно заставить мышцы приспособиться и выполнять любую работу.
Повторность
Какую частоту тренировок выбрать, решать вам. Необходимо прислушиваться к своему организму и следовать ощущениям. Ряд специалистов рекомендует начинать повторную тренировку только после окончания синтеза белка, который наступает через 2-3 суток после тренинга. Но здесь не учитываются индивидуальные особенности каждого человека и способности его тела к восстановлению. Можно совершать тренировку ежедневно, но каждый раз задействовать отдельную группу мышц. Выбираете, как вам комфортно.
В данном случае не работает правило: больше – лучше. Если вы переборщите с нагрузкой, мышечная масса не будет расти, вы будете терять калории, но не набирать объем там, где это необходимо.
Рассчитывайте силы так, чтобы к следующему тренингу через несколько суток вы смогли полностью восстановиться и повторить также объем нагрузок на конкретную мышечную группу. Вы должны хорошо выкладываться, но оставлять запас ресурсов для восстановительного периода, чтобы организм смог совершать обменные процессы в клетках мышц и увеличивать плотность мышечной структуры. Но не нужно становиться одержимым тренировкой и расчетом интенсивности.
3
Не носите кепки козырьком назад. Да, игроки в бейсбол частенько надевают кепки задом наперед: так удобнее носить защитную маску для лица. Выглядит это достаточно здорово, но не пытайтесь повторить, если у вас нет достаточно веской причины. Согласитесь, надетая козырьком назад кепка выглядит вычурно и даже инфантильно.
Гиперплазия мышц[править | править код]
Отличие гипертрофии от гиперплазииГиперплазия
(новолат. hyperplasia; др.-греч. ὑπερ- — сверх- + πλάσις — образование, формирование) — увеличение числа структурных элементов мышечной ткани (мышечных волокон) путём их деления. В отличие от гиперплазии, гипертрофия предполагает увеличение объемов клеток и саркоплазматических структур, без выраженного деления (новообразования ядер).
Исследования подтверждают, что вклад гиперплазии в объем мышцы составляет менее 5% и носит более существенный характер только при использовании анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Люди склонные к гипертрофии обычно имеют большее количество мышечных волокон. Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальной фармакологии. Не доказано увеличения количества мышечных волокон (гиперплазии мышечных волокон) у человека под влиянием силовой тренировки, хотя у животных (млекопитающих и птиц) гиперплазия мышечных волокон возможна.
Исследования
В то время как при гипертрофии мышц наблюдается увеличение количества ядер в мышечной клетке, при исследованиях процессов атрофии на животных было отмечено противоположное явление. Уменьшение количества ядер происходит в результате атрофии мышечных волокон после перерезки спинного мозга, при длительном пребывании в условиях невесомости или временного обездвиживания задней конечности. Таким образом, изменение количества ядер на мышечную клетку, по-видимому, имеет большое значение для регуляции размера клеточной фибриллы. В то же время необходимо иметь в виду, что увеличение количества ядер в мышечном волокне будет происходить до тех пор, пока активность превращения уже существующих ядер окажется способной для обеспечения роста их количества. Действительно, заметные изменения количества ядер в мышечном волокне наблюдались в мышцах, гипертрофированных более чем на 26 %, но не в гипертрофированных на 6,8—15,5 %.
Поскольку ядра дифференцированного мышечного волокна неспособны делиться, основным источником новых ядер в гипертрофированных мышечных волокнах являются миосателлитоциты или клетки-спутники. Миосателлитоциты расположены между базальной пластиной и плазматической мембраной мышечных волокон, для них характерно высокое ядерно-цитоплазматическое соотношение, хорошо развитый аппарат Гольджи, выраженный гранулярный эндоплазматический ретикулум и гетерохроматинизированное ядро. Активация клеток-спутников может происходить под воздействием ряда стимулов, после чего они начинают активно делиться. После этого образовавшиеся в результате митоза дочерние клетки сливаются с расположенными рядом дифференцированными мышечными клетками, обеспечивая таким образом увеличение количества ядер. Роль образующихся при делении миосателлитоцитов ядер в процессе мышечной гипертрофии подтверждается также экспериментами на животных моделях, демонстрирующими, что для обеспечения роста мышц необходимы активация и последующая пролиферация клеток-спутников.
Показано, что параллельно с гипертрофией мышц интенсивная силовая тренировка индуцирует существенное увеличение количества клеток-спутников в скелетных мышцах. Сообщалось об увеличении на 46 % доли миосателлитоцитов в скелетной мышце молодой женщины после 10 недель силовой тренировки. Не так давно увеличение количества миосателлитоцитов было обнаружено в скелетных мышцах группы мужчин в возрасте 70—80 лет, занимавшихся тренировкой выносливости. Таким образом, клетки-спутники обеспечивают увеличение количества ядер в мышечном волокне и возобновление своего собственного пула. Вновь сформированные мышечные волокна замещают поврежденные или вносят свой вклад в гиперплазию мышечных волокон, только если количество вновь сформированных волокон превышает количество волокон, поврежденных во время тренировки.